Divisibility Problems and Equations in Whole Numbers

Just for Fun: Math Corner

By Svetlana Backhaus | STEM Columnist | 02/13/2022
In my opinion, divisibility problems are one of the most difficult subjects in mathematics; there are so many versions and types that are sometimes barely reminiscent of each other. However, there are a few tricks to some of these problems-this article covers a few of these tricks, along with tips on how to solve equations in integers.

Alright, let's begin with a slightly easier problem:
Prove that the sum of a square of a whole number and that same number is an even number-meaning that it is divisible by 2.

First, we must create an algebraic expression that represents the statement of the problem. We can do so as such:

$$
a^{2}+a=2 n
$$

where a represents our whole, natural number, and n represents any other expression that results from algebraic working-however, remember that n must also be another whole number. Let's begin working with the left-hand-side:

$$
L H S=a^{2}+a=a(a+1)
$$

Now, a can be any number, even or odd; for a divisibility proof, we need to show that the expression is divisible by 2 when it falls under either category(in this case being even or odd). Let's consider a first case where is even, meaning that

Then, by substitution, the expression turns into

$$
a=2 m \text { where } \mathrm{m} \text { is any whole number. }
$$

Divisibility by 2 means that the expression must contain a factor of 2 somewhere, which in this case it does. Therefore, when a is any even number, the sum of a number squared and the number itself is divisible by 2. However, we still need to prove that this same condition holds when a is odd. Thus, let's look at a second case where a is odd, or

$$
a=2 q+1 \text {, where } \mathrm{q} \text { is any whole number }
$$

Then, by substitution

$$
(2 q+1)(2 q+1+1)=(2 q+1)(2 q+2)=2(q+1)(2 q+1) .
$$

Thus, when a is any odd number, the expression is also divisible by 2 . So, we have proved the statement of the problem. Now, let's try a problem that is connected to a divisibility problem. For these types of problems, we are asked to solve an equation in whole numbers. Let's take a look at one of these problems:

Solve: $(x-2)(x y+4)=1$ in whole numbers.
Firstly, by the requirements in the statement of the problem, the factors cannot equal rational or irrational numbers; they can only be whole (positive or negative) numbers. So, what are the numbers that multiply into 1 ? Well, $1,1,-1$, and -1 . Let's begin with the first scenario:

$$
\left\{\begin{array}{l}
x-2=1 \\
x y+4=1
\end{array}\right.
$$

Now, we must solve this system of equations. I am going to do this through substitution.

$$
\begin{gathered}
\left\{\begin{array}{l}
x=3 \\
x y+4=1
\end{array}\right. \\
3 y=-3 \\
y=-1
\end{gathered}
$$

Thus our first solution is $(3,-1)$.
Now, we move to our next scenario:

$$
\left\{\begin{array}{l}
x-2=-1 \\
x y+4=-1
\end{array}\right.
$$

Once again, I am going to solve this through substitution:

$$
\left\{\begin{array}{l}
x=1 \\
x y+4=-1
\end{array}\right.
$$

$$
y=-5
$$

Thus, our second solution is $(1,-5)$. These solutions do not violate the requirements of the problem as each solution is an integer. Let's look at a second example:

$$
2 x^{2}+x y=x+7
$$

My advice in beginning this problem is to factor the variables so that the equation resembles the one found in the last problem. This can be done as such:

$$
\begin{aligned}
& 2 x^{2}+x y-x=7 \\
& x(2 x+y-1)=7
\end{aligned}
$$

Now, we must think which factors multiply into 7(1 and 7, and -1 and -7) and set them equal to the factors in the above equation. However, each of these equations can equal each of these factors. Let me explain further from my working below:

$$
\left\{\begin{array}{l}
x=7 \\
(2 x+y-1=1
\end{array}\right.
$$

Then by substitution:

$$
\begin{gathered}
2(7)+y=2 \\
y=-12
\end{gathered}
$$

So, our first solution is $(7,-12)$.
But, we also have this case:

$$
\left\{\begin{array}{l}
x=1 \\
2 x+y-1=7
\end{array}\right.
$$

Then by substitution:

$$
\begin{gathered}
2+y=8 \\
y=6
\end{gathered}
$$

Thus our second solution is $(1,6)$. Now, we find the solutions for the negative factors.

$$
\begin{gathered}
\left\{\begin{array}{l}
x=-1 \\
2 x+y-1=-7
\end{array}\right. \\
2(-1)+y=-6 \\
y=-4
\end{gathered}
$$

Our third solution is $(-1,-4)$.
Lastly:

$$
\begin{gathered}
\left\{\begin{array}{l}
x=-7 \\
2 x+y-1=-1
\end{array}\right. \\
2(-7)+y=0 \\
y=-14
\end{gathered}
$$

And, our last solution is $(-7,-14)$.

Here are some problems for you to solve:

1. Solve $x^{2}-x y-2 y^{2}=1$ in integers.
2. Solve $x^{2}+x y-2 y^{2}-x+y=3$ in integers.
3. Solve $x^{2}-3 x y+2 y^{2}=3$ in integers.
